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ADAPTIVE MULTILEVEL METHODS IN SPACE AND TIME 
FOR PARABOLIC PROBLEMS THE PERIODIC CASE 

J. B. BURIE AND M. MARION 

ABSTRACT. The aim of this paper is to display numerical results that show 
the interest of some multilevel methods for problems of parabolic type. These 
schemes are based on multilevel spatial splittings and the use of different time 
steps for the various spatial components. 

The spatial discretization we investigate is of spectral Fourier type, so the 
approximate solution naturally splits into the sum of a low frequency compo- 
nent and a high frequency one. The time discretization is of implicit/explicit 
Euler type for each spatial component. 

Based on a posteriori estimates, we introduce adaptive one-level and mul- 
tilevel algorithms. 

Two problems are considered: the heat equation and a nonlinear problem. 
Numerical experiments are conducted for both problems using the one-level 

and the multilevel algorithms. The multilevel method is up to 70% faster than 
the one-level method. 

1. INTRODUCTION 

The aim of this paper is to present a posteriori error estimates and numerical 
results that show the interest of some multilevel techniques for problems of parabolic 
type. Our methods are based on multilevel spatial splittings and the use of different 
time steps for the various spatial components. 

The spatial discretization we consider is of Fourier type. Such a discretization 
allows one to simply define a two-level spatial decomposition; but, the authors 
believe that the general idea of the multilevel method extends to other types of 
spatial discretization and, in particular, to finite element methods (see Marion and 
Xu [11] for a first step in that direction, based on L2 orthogonal decomposition). 

Let T > 0. To compute an approximate solution of the problem on the time- 
interval (0, T), we first design an adaptive classical (one-level) method. It is based 
on an a posteriori analysis inspired by the work of C. Johnson and his coworkers 
[5, 6, 7, 10] for finite element methods. 

For time advancing, we use a variant of the discontinuous Galerkin method of 
order 0 (see Eriksson, Johnson and Thomee [8]), in which the nonlinear term is 
treated explicitly. It can also be viewed as a variant of the implicit/explicit Euler 
scheme where the force function is integrated over time exactly. 
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Let kn be the time-step at iteration n, and tn Zn ki. Denote by SMn the 
space of trigonometric polynomials of degree less than or equal to Mn/2 in each 
variable. The solution is spatially approximated at time tn by Un E SMn. At every 
iteration n, the adaptive method finds the discretization parameters kn and Mn 
such that an appropriate norm of the error is below a given tolerance. 

The a posteriori error analysis and the adaptive algorithm are investigated for 
two problems: a linear one (heat equation) and a nonlinear one. For nonlinear prob- 
lems, it is well known that the approach developed by Johnson and his coworkers 
leads to a posteriori estimates involving stability constants that are quite delicate 
to compute (see [10] for a discussion of this question). This difficulty occurs here of 
course, but it is not at all related to the possible introduction of a multilevel strat- 
egy -the a posteriori estimates in the one-level and multilevel cases will involve 
the same constants. Therefore, throughout this paper we choose to deal with some 
model nonlinear equations for which the stability constants can be evaluated an- 
alytically; these equations have some common features with the 2D Navier-Stokes 
equations. Our analysis of the one-level (and multilevel) algorithm extends easily 
to these equations, as well as to many other nonlinear problems. 

Next, we consider multilevel decompositions. For each n > 1, let mn and Mn be 
two integers such that 1 < Mn < Mn. The two-level spatial decomposition of SMn 
can be written as 

SMn = Smn D (PAn - Pmn)SMn 

Based on this splitting, we look for an approximate solution in the form 

Un = Vn + Wn7, where Vn E Smn, 7Wn E (PMn - Pmn)SMn. 

The component V is made up of the lower modes of U, whereas W is made up of 
the higher ones. Again the temporal discretization for each of these components 
is a variant of the discontinuous Galerkin method of order 0. But, V is integrated 
with a time step k, whereas W is integrated with a time step K > k. Equations for 
V and W are coupled through the previous set of modes of U and the (possible) 
nonlinear term (see Sections 2.2 and 3.2 for a detailed definition of the multilevel 
scheme). We derive an a posteriori error estimate for our scheme. Then, we design 
an adaptive algorithm. For a nonnegative integer p given by the user, at every 
iteration n, the algorithm finds discretization parameters kn, mn and Mn, and Kn 
is set equal to pkn, so that the error is below a given tolerance. 

Let us now motivate this multilevel strategy. For 2D Navier-Stokes equations 
(see Foias, Manley and Temam [9]), as well as for many other parabolic problems, 
it can be shown that the energy carried in the higher modes of the solution is much 
smaller than that carried in the lower modes. Consequently, the contribution to the 
error of the higher modes should be small. Therefore, it seems natural to integrate 
them with a larger time step and hope not to spoil the overall accuracy. This does 
not contradict the fact that the higher modes may evolve faster than the lower 
ones; nor the fact that the stability of the scheme may require a smaller time step 
for the higher modes, since we only aim to compute the solution with some given 
accuracy. 

Moreover, the interest of the multilevel strategy has been shown in Burie & Mar- 
ion [2], thanks to a stability analysis and a priori error estimates for a nonadaptive 
version of the multilevel method; so have earlier computational studies for the 2D 
Navier-Stokes equations in Debussche, Dubois and Temam [4]. Nevertheless, in 
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[4], no a posteriori analysis is carried out and therefore the adaptive criteria are 
different; also the numerical performances of the algorithm are not compared to 
those of a 'classical' (one-level) adaptive method. 

For both problems, our numerical results show the stability of the method and 
the interest of adaptivity. In computing time, the multilevel method is clearly 
superior; we have a gain of up to 70%. Moreover, we observe that the smaller the 
tolerance is, the more important the gain in computing time is. 

The paper is organized as follows. Section 2 focuses on the linear problem. Both, 
for the one-level and the multilevel methods, we give an a posteriori error estimate 
and introduce an adaptive algorithm. Then, we discuss some implementation issues 
and present some numerical tests. Section 3 adresses similar questions for the 
nonlinear equation. The theoretical results are only presented in these sections. 
Since the corresponding proofs are long and technical, we only give the main steps 
in the Appendix in the (more difficult) case of the nonlinear equations. The reader 
is referred to Burie [1] for more details concerning the proofs. 

2. A LINEAR PROBLEM 

Let Q (0, 2r)2 and T > 0. In this section, we consider the following heat 
equation. 

Find u Q x [0, T] -- R2 such that 

au (x, t) - Au(x, t) f (x, t), V(x, t) E Q x (0, T), 

(2.1) j 
u(.,t) is Q-periodic, Vt E (0,T), 

u(x, 0) = uo (x), Vx E Q, 

where uo: Q -, R2 and f: Q x (0, T) -, R2 are given data. 
This problem is a vectorial one in analogy with the nonlinear system considered 

in Section 3. 

2.1. An adaptive method in space and time. We aim to derive an adaptive 
code for the integration of (2.1). Our techniques will be inspired by the work of C. 
Johnson et al. (see [5, 6] in particular). 

The spatial discretization is based on the space SM of trigonometric polynomials 
with values in R2 of degree < M/2 in each variable. We denote by PM the L2(Q) 
projection onto SM. We also set 

(2.2) QM = I-PM. 

The time discretization we use is a discontinuous Galerkin method of order zero 
(see Eriksson, Johnson and Thomee [8]). We let N N* and introduce the following 
decomposition of (0, T): 

0= to < tl < ..< tN =T. 

We denote by In = (t,_17tn)n=1...N the N subintervals of (0,T), and set kn 
tn- tn-1- 

On each time interval In, the exact solution u of problem (2.1) is approximated 
by Un E SMn. So, the approximate solution U belongs to the following space 8h 
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Modes 

M2--- -- - ----- 

U1 U2 UN 

to t1 t2 tN 1 tN time 

FIGURE 1. Description of approximation space Sh 

(see also Figure 1): 

(2.3) 'Eh = fU ;Vn (E f1 ... ., NJ}, U(t)|I Un (E SM,,} 

Then, the sequence (Un)n is given by the following recursive formula: 

(2.4a) Un -PMr P Un-k-kn\AUn jPMrz fdt n = 1r v N 
In 

where 

(2.4b) Uo uo. 

This scheme is a variant of the backward Euler scheme, where f is integrated over 
time exactly. 

We now aim to give an a posteriori error estimate for this scheme. We need some 
additional notation. We denote by IHEI(Q) the space of functions which belong to 

Hljc(IR 2)2 and are Q-periodic. The space IHoI(Q) is equipped with the usual L2-norm 

/ r \ ~~~1/2 
lul =(j u(x) . u(x)dx) 

We also set 

IIUIIT = SUp u(.,t). 

tE(0,T) 

The functions k and M are defined on (O,T) by: 

k(t)Tlhn= knw Mst n = Mnf for n= 1,..., N. 

Then we state the following 
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Theorem 2.1. If uo ET HI1(Q) and f, ft(= 3) E L??(O,T;IHI(Q)), then the follow- 
ing error estimate holds: 

(2.5) 

max u (tn) - Un| 
n=O,..., N 

< LN{ Ik 2ft +maxl Un-Un-11+4 QMf +4 N k QMnUn-I 
IT +n=l,...,N nThl T +nmax.., kn Mn 

where we set 

LN = 2+ 
I 

max logt Uo =uo 2 n=1,..N \kn 

We refer to Burie [1] for the proof of Theorem 2.1. See also the Appendix for 
the proof of analogous estimates for nonlinear equations. 

The different terms arising in the a posteriori estimate (2.5) can be easily inter- 
preted. Indeed the first two are due to the time discretization; in particular, since 
IUn- Un-1l Ikut , we see that the scheme is of order one in time. The next two 
terms are related to the spatial discretization. In particular, since Mn > Mn-i 
implies QMn Un-i =0, the term QnMnu-l of (2.5) may be viewed as an estimate 
of the de-refining error. 

Let TOL be a given tolerance. Using the above a posteriori estimate, we aim to 
devise an adaptive algorithm that computes an approximate solution U of problem 
(2.1) satisfying 

(2.6) JU(tn) -UnI < TOL, for n = 1, ... .,N. 

Of course, the discretization parameters should be chosen so that the computational 
cost is optimal. 

In view of (2.5), it is natural to introduce the following functions: 

EStkn(kn,Mn,Un) = Ln {k2nlftIlIn + lUn - Un-}1 

EstMn (kn, Mn, Un) = 4Ln IMI2QMnf fl + QMnn2 
M~ I~ knMn J 

Estn = EStkn + EstMn 7 

EstT= max Estn, 
n=l ,. ..,N 

where n E N* , Ln = 2 + 1/2 maxj=i,...,n +log (t /k ), and lullHIn = SUptEI Iu(., t) I 

Clearly, EstT is equal to the right-hand side of the a posteriori estimate (2.5). 
Therefore, in order to guarantee the error control (2.6) it is sufficient to find the 
time steps kn, the numbers of modes Mn and the corresponding Un such that for 
each n = 1, .. ., N 

(2.7) EStn(kn, Mn,, Un) < TOL. 

At a typical time step, kn, Mn and Un are determined through an iterative 
procedure. Let us denote by Fn the function giving Un in terms of kn, Mn and 
Un-i in (2.4); that is, 

Un = Fn(kn, Mn, Un-i) = PMnUn-1 + knAUn + j PMn f dt. 
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Then, note that EStkn (resp. EstMn) depends mainly on kn (resp. Mn). We 
introduce a sequence (kn, Mni Un)j>o that tends to (kn, Mn, Un) satisfying 

91 
(2.8) Estkn(kn7 Mn7 Un) - TOL, EstMn(kn , Mn 7 Un) -TOL, 

10 10 
as follows. Suppose that (kn-1,Mn_ -1 Un-1) is known. We set 

(kvMn0) =(kn-1vMn-1) and Un =F(k0,Mn0,Un-1). 
Next, for j > 1, kn is given by 

(2.9a) (k)2Ln {flftKllj + - TL' 

where In-l denotes the interval (tn tn + ki71). Next, Mn is the smallest M E N* 
satisfying 

(2.9b) 4Ln {M<2 QMfl)Ii 1 + |QU }| TOL, 

and Un is given by 

(2.9c) Uni = Fn (ki n, Mnj7Un-l ) 

The procedure is reiterated until we reach the stopping condition 

(2 .9d) EStn (kin, Mn, Uni) < TOL. 

In this case, we then set (kn, Mn, Un) = (kn, Mni Un). 
Thanks to the stopping condition (2.9d) and to (2.8), for each n E {1, ... , N} 

the error control (2.7) should be satisfied with near equality, which is necessary in 
view of the reliability and efficiency of the algorithm. 

Moreover, if TOL is small enough the discretization parameters should slightly 
vary from one time step of the scheme to the next one. Therefore, the sequence 

(kin Mn3 Un)j should converge in very few iterations. We will check this property 
numerically. 

Remark 2.2. It could seem more natural to ask for 

EStkn (kn7 X7 Un) - TOL/2, EstMn (kn 7Mn 7Un) _- TOL/2 

instead of (2.8). But, since the parameter Mn is discrete, this choice would lead 
to EstMn (kn Mn Un) < TOL/2; so the estimated error would often be about half 
the tolerance, which implies a loss of efficiency for the algorithm. 

2.2. A multi-level adaptive method. The strategy of the multi-level method 
we will introduce consists in freezing the higher modes of the approximate solution 
during several iterations of the lower modes. As explained in the introduction, we 
expect that integrating the higher modes with a larger time-step will not spoil the 
overall accuracy of the method. 

As in Section 2.1, we denote by U the approximate solution of (2.1) and use the 
decomposition of (0, T) in N subintervals In = (tn, 1tn) with kn = tn- tn- 

Now, concerning the spatial discretization, on each interval In we are given two 
integers mn and Mn such that 1 < Mn < Mn. The integer mn is called the cut- 
off mode. The approximate solution splits into a sum of two components, a low 
frequency one Vn and a high frequency one Wn: 

Un = Vn + Wn, 7Vn E PmnSMn and Wn 4E (PMn -Pmn)SMn. 
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Modes 

w~~~~~ 
MQ.~~~~~~~~~~~~~V- I V- WQ 

mQ~~~~~~~~~~~~~~~ 

V4 V5 ~ ~ Y2Y4Y 

to t1 t2 t3 t4 t5 tN-3 tN-2 tN-1 tN time 

FIGURE 2. Description of approximation space -Fh 

For each q = 1, . . . , Q, let Pq be a nonnegative integer. The component W, is 
kept constant over Pq successive intervals I,. We denote by Jq the union of these 
intervals, and by Kq the length of Jq. Obviously, we have 

Kq= E kn. 
n, In C Jq 

Since the parameters mn, Mn and Wn are kept constant over Jq, they are denoted 
by mq, Mq and Wq. 

The approximate solution U of problem (2.1) lies in the space, (see also Figure 2), 

(2.10) -Fh = U ; Vq E f17 . * Q}, Vn E {1, ... . NJ such that In C Jq7 

UIIn(t) = Un= 7Vn + Wq, where Vn EE Smq and Wq E (PMq - Pmq)SMq}. 

For q E {1, ... , Q}, we denote by nq the index of the first interval In contained in 
Jq; that is, 

(2.11) Vq = 1,.. ., Q, nq = min{n E {1,..., N} such that In C Jq}. 

The sequences (Vn)n and (Wq)q are given by the following recursive formulas: 

(2.12a) Vn-PmnUn-1-knAVn= Pmnfdt) n=1,...,N, 
In 

(2.12b) 

Wq-(PMq -Pmq)Unq-1-KqAWq j (PMq-Pmq)fdt, qq1,...,Q 
Jq 

where 

(2.12c) Uo =uo. 
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Note that the component V1 is computed with the time-step kn, whereas Wq is 
computed with the time-step Kq. The equations (2.12a) and (2.12b) are coupled 
through the projection of Un_1 on the new set of lower (resp. higher) modes. 

We now give an a posteriori error estimate for this multilevel scheme. Let k, K, 
m and M be the functions defined on (0,T) by 

k(t)lj, = kn, K(t)Ijq = Kq, Tn(t) Jq = Tnq, MI(t)IJq = Mq. 

The following theorem is proved in Burie [1]; see also the Appendix for nonlinear 
equations. 

Theorem 2.3. If uo E H1 (Q) and f, ft E L (0, T; IHI(Q)), then the following 
error estimate holds: 

(2.13) 
max u(tn) -Un U 

<LN<Ilk 2ft T_max Un-Un-11+4 QMf ? 4 maxQm 
- 1 

-~~~ ITn=____ M T q.Q kniq Mq 

+ | | ( k2+ K2)_(PA-Pm)ft T2 maX I (PMq -Pmq) (Unq -Unq_) 

where nq is given by (2.11) and 

LN = 2?+ max logytn ),= 0=u0. 

It is interesting to compare estimate (2.13) with the corresponding one for the 
scheme (2.4). The first two lines in the right-hand side of (2.13) are similar to the 
estimate (2.5); in particular, we emphasize that the constants are the same ones. 
The other terms of (2.13) are clearly due to the multilevel strategy. They vanish 
if m =M. Also, if m is close to M, these terms are small in comparison with the 
previous ones. Indeed, in this case we have 

||(k2 +K2)(PM-Pm)ftIT AK Ilk ftIT; 

similarly, provided k and K are 'small enough', 

2 m1ax |(PMq -Pmq)(Unq -Unq-1)l 211K(PM-Pm)UtW|T q=:1 ..IQ 

< max |(Un-Un_1) I- c kut11T. n=1...N 

We now aim to define an adaptive algorithm that yields an approximate solution 
U of problem (2.1) such that 

(2.14) JU(tn)-Un? < TOL, for n = 1,.. .,N, 
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where TOL is some given tolerance. Recalling (2.13), for n E {1,..., N} and 
q E {1, ... , Q} we introduce the following functions: 

EStkn 4Ln {knllftflIn + Un- Un-l| I 

Estmq =4Ln {Mq 2IIQMqf|lJq + Q| nA-1|} 

E5tMLq = 2|Kq(PMq - Pmq)ftIIJq + 2|(PMq -PMq)(Unq -Unq-)L 

Est q = uhmax EStkn + E5tmq + EstMLq~ n such that InCJq 

EstT max Estq, 

where nq is given by (2.11), Un = Vn+Wq and Ln = 2+1/2 maxi. 1, n /log (ti/ki) 
(the dependence of Ln upon Jq is neglected). 

Thus defined, EstT is greater than or equal to the right-hand side of (2.13). 
So, in order to guarantee the error control (2.14), it is sufficient to find for each 
q E {1, ... ,Q} 

Kq, Mq, mq, and kn for all n such that In C Jq, 

and the corresponding approximations Wq and (Vn)n, InCJq such that 

Estq(kn,Kq, Mq,Mq,Vn + Wq) < TOL. 

At a typical time step q, by analogy with the one-level method, we use an iterative 
procedure that converges to parameters and corresponding approximate solutions 
satisfying 

Estkn(kn,Kq.... 
) < TOLI, EstMq (kn Kq,...) TOL2 , 

EstMLq(kn,Kq,.) < TOL3, 

with TOL1 + TOL2 + TOL3 =TOL. 
Here, Estkn and Estmq will allow us to define the time step kn (for the lower 

modes) and the number of modes Mn. Then the other term EstMLq should allow us 
to find the time step Kq (for the higher modes) and the cut-off mode Mq. However, 
this quantity does not seem to be sufficient to yield both parameters (especially 
if ft 0). Therefore one needs to introduce a supplementary condition. Here we 
choose to fix the number of iterations of V during which W is frozen. That is, the 
ratio Kq/kn is kept constant; we set 

Kq = p * 

where the value of p is chosen a priori. In practice, during the iterative procedure, 
once the parameter kn is given by Estkn(kn) TOL1, we set q= pk and qis 
given by condition EstMLq (K3, m) TOL3. 

This procedure is rather natural, since EstMLq (Kq, Mq) < TOL3 always has the 
trivial solution mq = Mq. Clearly, if the algorithm gives mq < Mq, this will show 
that the higher modes of U can indeed be integrated with a larger time step without 
any loss in accuracy. 

Remark 2.4. The above method involves two levels, but the principle can easily be 
extended to several levels. Indeed, let N be some number of levels and let mi be 
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N integers such that 1 <m1 < ... < MN. The approximate solution can be split 
into the sum 

U V V+W2 + + WN, 

where V E Sm1 and Wi E (Pmi -Pmli )SmN. The component V is then integrated 
with a time step k, and each Wi with a time step pik, where the pi are integers 
satisfying 1 < P2 < ... < PN. The pi are chosen a priori; for instance a natural 
choice is pi = 2i-1. Then, the adaptive algorithm gives the values of the different 
cut-off modes mi. 

We now introduce the algorithm. Let E > 0 be a small parameter. We set 
9TOL TOL 

TOL, = (1-6) 10 TOL2 = (1-6) 10 TOL3= 6TOL. 

This choice will provide values of k and M close to those in the one-level method, so 
that it will be possible to compare the numerical performances of the two schemes. 
For the numerical tests, we set E = 1/25. 

The algorithm is composed of two steps. At a typical time step q, we recall that 
nq is defined by 

nq = min{n E {1,. . .,N} such that In C Jq}. 

Suppose that (knq-i IKq_I,Mq- I,mq-1) and Unq-I = Vnq-1 + Wq- I are known. 
First, we compute parameters knq, Kq, Mq, mq and the corresponding components 
Vnq and Wq of Unq given by (2.12a) and (2.12b). Next, for all n such that In C Jq, 
since Kq, Mq, mq and Wq are known and fixed, we only have to compute parameters 
kn and the corresponding component Vn of Un = Vn + Wq given by (2.12a). 

More precisely, we first introduce a sequence 

(knqq, K q n Unj q fjq + Wqj)j>o, 

where VnJ and W3J are computed in terms of k3 Kq,Mq, m3 and Unql thanks whr nq an qj nlq, Kq3 q Uq1tak 
to (2.12a) and (2.12b). It is defined as follows. We set (koq, K?, M?,mO) = 

(knq -I, Kq-I, Mq I, mqi) and compute the corresponding Uno = V2 + W?. Next, 
for j > 1, kJi is given by 

)2 l~~~Unj-l Unq-il ~ 
(2.15a) (kq)2Lnq Jj_ + _ __ = TOL 

where In71 denotes the interval (tn, tn + kn1). Then, 

(2.15b) Kj = pkiqv 

and Mq3 is the smallest M E N* satisfying 

(2.15c) 4Lnq M-211QMf 1j + QMUnq1 1 <TOL2. q 
lq )M 

Finally, mT1 is the smallest m < MS satisfying 

(2.15d) 

2Lnq { (Kq ) 2fl (PMj - Pm) ftWliJj-l + (PMfj - Pm)(Un -1 < TOL3, 

and we compute the corresponding Unq = Vnq + Wq3 given by (2.12a) and (2.12b). 
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This first procedure is reiterated until we reach the stopping condition 

(2.15e) (EStknq + EstAIq + EstMLq)(knqJ ,Kj, Mq, Uq) < TOL. 

In this case, we set (knq Kq,Mq,q Unq) = (k j, KI, Mq, mI, Uj q) 
Next, we perform the remaining iterations of Vn. For this, we introduce a new 

variable Sumk, and set Sumk = knq. As long as Sumk < Kq, for each n, the 
parameter kn-, and Un-, = Vn-l + Wq being known, we determine kn and Vn as 
follows. We set k? = kn-1 and compute the corresponding component Vn7 thanks 
to (2.12a). Next, for j > 1, ki is given by 

)2 lUnl -Un1 
(2.15f) (k) 1flftH1l-' + Th(J1)2 } = TOL1, 

and we compute Un = VXj + Wq, where Vn is given by (2.12a). 
This procedure is reiterated until the stopping condition 

(2.15g) Estkn (ki, Unj) < TOLi 

is satisfied. In this case, we set (kn, Un) = (ki, Un) and Sumk =Sumk + kn, and 
perform the next iteration of Vn. 

2.3. Numerical tests. We first give some indications on the practical implemen- 
tation of the one-level adaptive algorithm, which easily extend to the multilevel 
algorithm. To allow Fast Fourier Transform (FFT) algorithms, the levels of modes 
M belong to 

(2.16) GM ={M N; M =2a3b5c, a,b,c EN with a>2 and 4<M <Mmax}, 

where Mmax = 128. Then, assuming M ? Mmax, we approximate uo by PMn,aXUo* 

According to the scheme (2.4), at each iteration n, we need to compute the 
quantity PMnUn-1, where Un-1 E SMn-l. If Mn > Mn-1, PMnUn-1 is obtained 
by padding Un-1 with zeroes. On the contrary, if Mn < Mn-1, PMn Un1 is simply 
obtained by truncation. Next, the quantities IUn - Un1 and IQMnUn-1I for the a 
posteriori estimate Estn are obtained using the Fourier coefficients of Un and Un- 
and the Parseval equality. 

The first solution of (2.1) we consider is defined by f 0 and 

(10)l (XIv X2) = (UO)2 (XI, X2) = 5 exp(-5((xi )2 + (X2 2)). 

The initial condition uo is a smooth 'approximation' of a 6-function at (xI, x2) = 

(ir,r) (see Figure 3). 
We choose T = 1.5 and TOL= 0.001. The results are given in Figure 5 for the 

one-level method, and in Figure 6 for the multilevel one, where p = 3. In Figure 5 
are displayed versus time: 

* upper-left quadrant: time-steps k, 
* upper-right quadrant: number of modes M, and imax (points), the maxi- 

mum number of iterations needed by the algorithm to find the discretization 
parameters, 

* lower-left quadrant: L2-norms of real (continuous line) and estimated error 
(points), 

* lower-right quadrant: L2-norm of the solution u of (2.1). 
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Figure 6 is similar to Figure 5 except for the upper-right quadrant, where we 
display the total number of modes M, and the cut-off mode m (dashed line). 

As expected, we first notice that the discretization parameters k and M given 
by both algorithms are roughly equal. Therefore, further displayed tests will only 
concern the multilevel method. 

Next, in Figure 5 we find that Jmax is equal to one most often, i.e. the search 
for discretization parameters loop converges in one single iteration. This allows us 
to minimize the cost of the adaptive algorithm. 

Defining the efficiency index by 

(2.17) Eff= EU t T 

for all performed tests, we found that Eff-? 0.2. For solution 1, we computed it for 
several values of TOL, and, checked that it does not depend on TOL: 

TOL 10-1 5.10-2 10-2 5jC1-3 10-3 5.10-41 
Eff 0.20 0.19 0.22 0.22 0.23 0.21 

Concerning computing time, the following table compares both methods for vari- 
ous tolerances and values of p. All computations were performed on a HP 9000/715 
work station. 

[ Solution I(T=1.5) I1 level]Ip=3 Ip=5 [p=7Tp=9 IP=10] 
|TOL LCPU time (seconds) ||78 s ||65 S| 63 S| 64 S| | 1 

I=10-3 
I M-L time / 1-L time 1 0.83 0.81 1 0.82 1 

1_ 
1 

[ TOL CPU time (seconds) | 189 S 139 S 140 S 135 s 134 s 136 s 
=5. 10-4 M-L time / 1-L li 1 0.74 0.74 [ 0.71 0.71 1 0.72 

In this case, the gain in computing time allowed by the multilevel strategy reaches 
30%. We notice that the smaller TOL is, the better the gain is. Actually, this fact 
is general, as we will show later. 

The second solution we consider is defined by (see Figure 4) 

(U0)1(X1, X2) = (U0)2(X1, X2) = (-8ir4/15 + 4_F2X2 - 4-FX3 + X42)/100 

fi(xl, x2) = f2(xl, x2) = exp(-0.1(|xj - r|2 + x2 -_ 112)) (cos (irt/2))5. 

We choose T = 8 and TOL= 0.01. The result of the multilevel method is shown 
in Figure 7. 

With T = 120 (i.e. 30 periods of f), we check the stability of the multilevel 
method for TOL=0.05 (see Figure 8). 

Concerning computing time, we have the following table. 

Solution 2 (T=8) I level || p= 3 J p=5 ] p =,7 | p-=9 
TOL CPU time (seconds) 29 s | 18.5 s 17 s 17 s |_=_ 

=10-2 M-L time/ 1-L time || 1 || 0.64 J 0.59 ] 0.59 |_ I 
TOL CPU time (seconds) 1250 s | 685 s 576 s 498S T 520 s 

=10-3 M-L time/ 1-L time || 1 || 0.55 j 0.46 1 0.40 0.42 
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For this solution, the gain in computing time reaches 60%, and, again increases 
when TOL decreases. 

Indeed, as shown on Figure 9, p being a constant, as TOL decreases the total 
number of modes M increases since a finer refinement is needed, while the cut-off 
value m given by the algorithm does not change. More precisely, there exists a 
function mc(t), which does not depend on TOL, such that if M(t) > mc(t) then 
m(t) nmc(t). 

Therefore, compared with the one-level method, the smaller TOL is, the larger 
the number of modes integrated with a time-step pk > k is, and finally, the greater 
the gain is. 

We heuristically justify this behaviour. At a typical time-step n, let us first 
assume that 

Ik2ft(tj)? > |Un-Un-111 

and, also, 

P kn(PM-Pm)ft(tn)I > |(PM - Pm)(Unq - Unq-i)LI 

Then, due to the a posteriori estimate (2.13) and to the construction of the multi- 
level algorithm, we have 

29TOL 2 2~k( )( TOL 
I kn ft (tn) I 10 2p I kn (PM-Pm)ft (tn) I r 25 

and so, dividing the former term by the latter one, we see that 

2 1 (PM- Pm)ft (tn) | 1 
I ft (tn) 1 45 

Next, assume that 

Ik2ft (tj) I< |Un -Un-11I 

and 

JUn Un-11 knJut(tn)J, 

and also 

I(PM - Pm) (Unq - Unq -1)| (PM- Pm)(Wq - Wq-1)I pknIUt(tn) I 

As before, we then obtain 

I (PM Pm)Ut (tn) |_1 

IUt (tn) - 45' 

So, in both cases, we have found an 'equation' that does not depend on TOL, 
linking p and m. These two equations explain the existence of mc(t). (Of course, 
this behaviour is strongly related to the fact that, for the multilevel algorithm, p is 
a constant given by the user.) 

In conclusion, we have checked that the multilevel method allows a significant 
gain in computing time, compared with an optimal adaptive one-level method. 
Moreover, we have shown that the smaller the required accuracy is, the greater the 
gain is. 
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FIGURE 4. First component of solution 2 at T = 2 
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FIGURE 5. Solution 1, TOL 0.001, T =1.5 
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FIGURE 6. Solution 1, TOL = 0.001, p=3, T =1.5 
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X 10 3 Tolerance =0.01; p=5 
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FIGURE 9. Solution 2, p= 5, m(t) does not depend on TOL 

3. A NONLINEAR PROBLEM 

Let Q = (0, 27r)2 and T > 0. In this part, we consider the following nonlinear 
problem. 

Find (u= ( u), p) such that 

Aiu, + ui1 +- fl in Q x (0, T), 
At Ox Ox 

-U2 AU2 4 O= f2, in Q x (0,T), 

(3.1) 1 div u = 0 and u(x,t)dx = 0, in Q x (0,T), 

u(.,t) and p(., t) are Q-periodic, t c (0,T), 

u1t=o = Uo. 

To simplify the notation, hereafter the following abstract formulation of (3.1) in 
the space of divergence-free functions will be considered: 

ut + Au + B(u) =f, 
(3.2) _ 

u(0) = uo, 

where A denotes the Stokes operator and B(u) the projection of the nonlinearity 
on the space of divergence-free functions. Note that problem (3.1) satisfies the 
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classical property of the Navier-Stokes equations 

jB(u) * udx = 0. 

Hereafter, we will need the following functional spaces: 

H = {u EH I(Q), ju(x)dxz=Oanddivu=0}, 

V = {u H TIE(Q), j u(x)dx =O and div u= O}. 

We also recall that D(A) =H n HI2 (Q). In the sequel, we assume that 

(3.3) uo E D(A) and f,ft c L'(0,T;H), 

which is sufficient to ensure that the solution u of (3.1) belongs to 

(3.4) 

g = {u: Q x [0, T] -R, u EC([0, T];V) nL2(0, T; D(A)) and Ut C L2(0, T; H)}. 

3.1. An adaptive method in space and time. We use notation analogous to 
that of Section 2.1 for the heat equation. In particular, SM, still denotes the 
space of trigonometric polynomials with values in 1R2 of degree < M?72 in each 
variable, but supplemented with a divergence-free condition. Also, PM, denotes 
the projection on this space. Taking this difference into account, the approximate 
solution U lies in space 1Eh defined by (2.3). The sequence (U,), is advanced in 
time thanks to the following scheme: 

(3.5a) Un -PMU Un-jP + knAUn + knnPmnB(Un_1) PMnf dt, n = 1,. **N, 

with 

(3.5b) Uo = uo. 

This scheme is a variant of the discontinuous Galerkin method, in which the 
nonlinear term is computed explicitly, for implementation convenience. 

The techniques for the a posteriori analysis of problem (3.1) are inspired by the 
work of C. Johnson et al. (see [7, 10] in particular). For a general nonlinear problem, 
this analysis requires the introduction of stability constants, whose computation is a 
nontrivial difficulty. Indeed, they are defined through the solution of an associated 
linear problem that depends on the solution u and its approximation U. Usually, 
this dual problem has to be solved numerically. 

However in the case of problem (3.1), these stability constants can be estimated 
from above with realistic and explicit bounds. This would not be true for the 
Navier-Stokes equations, for which the corresponding bounds involve terms like 
exp(cT11Vufll1), where l denotes the L?(0,T;L?(Q))-norm. Such a bound 
cannot be used numerically, since this would lead to over-refined discretizations. 

Here, the stability constants are defined through the solution (o, q) of the fol- 
lowing associated problem. 
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Let T < T. Find ((p ( 2WI), q) such that 

A -t-p + B* (U, U; () + Vq = O, in Q x (O, T), 

div (p = 0 and j (x, t) dx = 0, in Q x (0,T), 

(3.6) 

| (.,t) and q(., t) are Q-periodic, t c (0,T), 

where we set 

09(ul - u) (P l09(2\ 
(3.7) B*(u,U;p)= ( Uux + 0U ) 

Using standard Galerkin techniques, one can check that, if (pt c V, then (p 
n C([0, T); D(A)). 
Through the solution (p of (3.6), we are now able to define the following stability 

constants Cs, i= 1,...,5. 

(3.8a) 

max T) SUpo<e<1/e I log I-1/2 fo IptI dt) 
C (T, u, U) U sup sup 

O<T<T<< %HH 

(3.8c) CS(T, u, U) = sup sup 11 EA(OjT) 
O<T<T OTEH l(pt 

(3.8d) Cs(T,u,U) = sup sup 1logkNljl/2 nN= knljAp(tni)j 
1 <N< NPi T H I9 

(3.8e) C5 (T, u, U) = sup sup 0Td 
O<<TTSTz H H (p'T 

where ||denotes the (L2(Q))2 norm and 

|U|I= SUp |(,t 
tcl 

If the discretization is fine enough, we may assume that the constants CF (T, u, U) 
can be approximated by CF (T, u, u). Then, as already mentioned, these constants 
can be bounded from above as follows (proof omitted): 

(3.9a) CS(T, ux, u) < max {2 + min(1, 2T) uivll 3/2 + 2V k 12 koo }, 

(3.9b) C2S (T, u, u) < 3/2 + 2s||ui ll oo, 

(3.9c) C(T,u,u) 3+ 2 min(1, T)p SuP llo 

(3.9d) Cbp (T, u,xu) ? {2C + min(1, u T) ua alrea} min(1,T), 
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where 11ul II, denotes the L?(0, T; L?(Q))-norm of ul. Moreover, since the con- 
stant Cs is the analogue of C2S with the integral replaced by a rectangle formula, 
in the implementation we also use the bound (3.9b) for CS(T, u, u) 

We can now state the following a posteriori error estimate. 

Theorem 3.1. If uo c D(A), and if f, ft c L?(0, T; H), then the following error 
estimate holds: 

(3.10) 

|U(tN)-UNI < (2+LN)CS(T,uU) { |2 ft N}max JUn-Un-11 

+ 4LN C2 (T, u |, U) 4LNC4 (T, u, U) max QMA,Un-1 
T nE{1,. ,N} knMn 

+ 4LN C2S(T, u, U) max Qm,,B(Un) 
nE{1,..N} M2 

+C5s(T,u,U) max I PMn (B(Un)-B(Un1j))I 
nE{1,..N} 

IN M2 IN 

NQM kMft QMNB(UN) 

where we have set 

LNZ max lok.K Uo = uo. 
nE{1,...,N} 

The constants Cs(T, u, U) are defined by (3.8). 

The proof of this theorem is given in the Appendix. 
We now interpret the different terms arising in the right-hand side of (3.10). Up 

to the stability constants, the first two lines of (3.10) are similar to the estimate 
(2.5) of the linear problem. 

The third and fourth lines of (3.10) are composed of terms involving the nonlin- 
earity B. The first (resp. second) one is due to the spatial (resp. time) discretiza- 
tion. Again, since 

IPM,(B(Un) - B (Un)) kn &B(u) (tn) i atl 
we see that the scheme is of order one in time. 

Finally, the last line is composed of L? norms on the interval IN. Apart from 
this, the corresponding terms are analogous to previous terms of (3.10). 

We can now introduce an adaptive algorithm for approximating problem (3.1) 
with some given tolerance. Of course, we want the numerical cost to be optimal. 

The algorithm is built by analogy with the one devised for the linear problem. 
For a nonnegative n, we define the following functions: 

Estkn (kn X Mn Un) = (2 + Ln)CS (kn 2 
IftI|| In + |Un Un-_ |) 

+ CSIPM,(B(Un) - B (Un))l 

EstM,(kn, Mn Un) = 4(LnC2S + C5S)Mn-2 (W1QM,fflIn + IQ mB(Un)l) 

+ 4LCs |kQM .Un-1 + 4 Mn 2IQM'jtlII ZI Cs MCsk 
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Est, EStkn + EstM, X 

EstT max Estn, 
nEC{1,* ,N} 

where Ln = maxj{j,...,n og The constants CF are defined by (3.8) with 
(T, u, U) = (tni u, U). 

Then, at a typical time step, suppose that (kn-l,Mn1, Un-1) is known. To 
find kn, Mn, and the corresponding Un, we introduce a sequence (kn, Mn, Unj)i>?, 
where Un is computed in terms of k3, Mn and Un-1, thanks to the scheme (3.5), as 
follows. First, we set (k Mno)=(kn_ ,Mn-1), and compute Un. Next, for j > 1, 
kn is given by 

(3.11a) (k2)2{(2?Ln)CS (Ilftllij-I + (71)2 ) 

s 8 PMj-i (B(Un?j1 - B(Un_1)) } 9 TOL, 

where In-l1 denotes the interval (tn, tn + kng). Next, Mn is the smallest M C N* 
satisfying 

(3.1lb) 4(LnC2 + C3S)M2 {|QMf|Inj-l + |QMj-lB(Un-1)l} 

+ 4LCS QkMUnI + 4Csk M-2IIQMftI S-_1 1TOL, nC4 kj M2 
n n 10 

and we compute Un by (3.5). 
This procedure is reiterated until we reach the stopping condition 

(3 .1 1c) EStn (kn I Mni I Un ) < TOL. 

In this case, we set (kn Mn Un) = (kiMnIUn) 

3.2. A multilevel adaptive method. We keep the notation of Section 2.2 for 
the heat equation, except that the polynomials of SMn now satisfy a divergence 
free condition as in Section 3.3. So, the approximate solution U of (3.1) belongs to 
the space -Fh defined by (2.10). 

For q c {1,... , Q}, we recall that nq is the index of the first interval In contained 
in Jq, that is, 

Vq C Nq, nq = min{n C {1,. . ., N} such that In C Jq} 

Then, the sequences (Vn)n and (Wq)q are recursively defined by 

(3. 12a) 

Vn- PmnUn-1 + knAVn + knPmnB(Un-)j Pmnf(s)ds, n= 1 N, 
In 

(3.12b) 
Wq - (PMq - Pmq)Unq-1 + KqAWq 

+ Kq(PMq -Pmq)B(Unq- 1) q(PMq- Pmq)f(s)ds, q = l, Q, 

with 

(3.12c) Uo = uo. 
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Equations (3.12a) and (3.12b) are coupled, on one hand, through the projection 
on the new set of lower (resp. higher) modes of U,-1, and, on the other hand, 
through the nonlinear term B. For both Vn and Wq, the nonlinear term is computed 
explicitly. 

The following theorem gives an a posteriori estimate for this scheme; we refer 
the reader to the Appendix for its proof. 

Theorem 3.2. Let uo c D(A) and f c L2 (0, T; H). If f, ft c L?? (0, T; H), then 
the following error estimate holds: 

(3.13) 

|U(tN)-UN| < (2 + LN)Cs (T, u, U) Ilk 2 ft T+ max |Un-Un-11 1 IIT 
+ 

nE{1,..N} 

+ 4LNC(T,u(T, ,U) Qm! 4N T max Qm l Unq l- 

(2 T qE{i...Q} knqM M2 

+4LNC2S(T,u,U) max Qm,,B(Un) 
nE{1,..N} M2 

+Cs(T,u,U) max JPmn (B(Un)-B(Un_1))J 
nE{1,..N} 

+CS l) QMf |+M|I kQMft + QMNB(UN) } 

QM! IN N 

+ (2 + LN)C1S(T, u, U) K 2(PMPm)ft T 

+(2+LN)CS(T,u,U) qmaxQ I(PMq Pmq)(Unq Unq-i)1 

+C5 (T,u,U)max {max I(PMq -Pmq)(B(Un)-B(Unq i))I} 

where 

LN= max o , Uo = uo. 
nE{ 1,* ,N} 

The constants Cs (T, u, U) are defined by (3.8). 

Let us compare estimate (3.13) with the one for the scheme (3.5). The first five 
lines of the right-hand side of (3.13) are analogous to the estimate (3.10). 

The other terms of (3.13) are due to the multilevel strategy. Up to the stabil- 
ity constants, the first two terms are similar to the two last terms of (2.13). As 
previously noted, if m is close to M, they are small in comparison with previous 
corresponding terms of (3.13). This result is still valid for the last term of (3.13) 
since, if m - M, then 

maaxQ} |(PMq - Pmq)(B(Unq-) - B(Un))l H |lK(PM - Pm)B(u)tllT 

<< max IB(Un) - B(Un_J) ) |1kB(u)tllT 
nE{1,..N} 

An adaptive algorithm can be built by using (3.13). It has some common features 
with the one for the heat equation, that is, (2.15). In particular, the number p of 
iterations of V during which W is frozen is again fixed and chosen a priori. For the 
sake of brevity, we do not present this algorithm here and refer to Burie [1]. 
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3.3. Numerical tests. We again give some indications on the implementation of 
the algorithms. Compared with the linear case, the new ingredients are the stability 
constants (3.8), and, the quadratic nonlinear term B, which is computed thanks to 
a pseudo-spectral method. 

For both methods, in the estimators the stability constants C (t, u, U) are 
replaced by their upper bounds (3.9). 

The Fourier coefficient of o associated to the mode 1 = (1l, 12) c Z2 is denoted 
by Fj(p). We also define 

f1 = + ~, 2 111f0= max(lllt, 1121). 

The projection of o on the divergence-free and zero-mean functions is easily 
expressed by 

(3.14) 
PdeVQp)(x)= 

E (YK?)- l12(I Y&P)))e 

1JE2, 1Jo0 

One-level method. Since U,_1 c SM,_ (= vector of trigonometric polynomials 
of degree < Mn_ 1 /2), B (Un- 1) belongs to S2MTh 1 . To compute all the Fourier coef- 
ficients of B(Un_1), before using the pseudo-spectral method, it would be necessary 
to pad the Fourier coefficients of U,_1 for modes 1 such that Mn_ 1/2 < l oo < Mn- 
with zeroes. 

Actually, we use the 3/2 rule (see for instance Canuto, Hussaini, Quarteroni, and 
Zang [3]). This method is a standard one in order to remove the aliasing error due 
to the pseudo-spectral method. It provides the Fourier coefficients of B(Un-1) for 
lllc, < 3Mn-1/4, and for llKo < Mn-1/2 the aliasing error is removed. Of course, 
to allow a FFT algorithm, the quantities 3M/2 belong to GM defined by (2.16). 

Then, assuming that Mn < 3Mn-1/2 (the variation of M between two time 
steps is small), the computation of Un through formula (3.5) is achievable. 

Concerning now the computation of the a posteriori estimate, the nonlinear terms 
are computed by using their Fourier coefficients thanks to the Parseval equality. In 
particular, we write 

(I - PMT )B(Un)| (P3M/2 - PMT )B(Un) 

= 21r / E IZ (B(Un))12. 
Mn/2<I111o ?<3Mn/4 

Multi-level method. At a typical time step n, to find Vn and evaluate the a 
posteriori estimator, we need to compute PmnB(Un1). We assume that 3mn > 

Mn1. Although Un-1 belongs to SMn-1, we compute PmnB(Un-1) with FFT 
based on (3mn/2)2 points rather than (3Mn-1/2)2, which is compulsory if we wish 
to allow the multi-level method to be faster than the one-level. 

For this, we proceed as follows. First, by analogy with the 3/2 rule used for 
the one-level method, we start with P3mn/2Un1. Then, we project the Fourier 
coefficients for modes between 3mn/2 and 3mn upon the modes lower than 3mn/2 
(see Burie and Marion [2]). So, if 3mn > Mn-1, the nonlinear term PmnB(Un-1) 
is exactly computed. 



570 J. B. BURIE AND M. MARION 

0.06 

0.04 

0.02 

0.04 

0.06 

8~~~~~~~~~~~~~~~~~~~~~~~ 

4 
~22 

x2 0 0 xl 

FIGURE 10. First component of the solution 3 at T = 4 

We have performed several numerical tests, but, for the sake of brevity, here we 
only present the ones related to the solution defined by (see Figure 10) 

UO(X1,X2) = Pdiv 2exp(-2((xi -7r)2 + (X2 -))) 

ex( p(-0.1((xi - ir)2 + (X2 - ir)2)) cos(irt/2)5 

f exp(-O.1(((xl -_7r)2 + 2(X2 - ir)2)) cos(7rt/2)5 

We choose T = 4 and TOL=0.01. In Figure 11 the results of the multilevel 
method for p = 10 are displayed. 

We again define the efficiency index by 

(3-15) Eff = ~~~~IIU - UIIT 
(3.15) Eff EstT 

Probably due to the bounds (3.9) for the stability constants Cs, here Eff depends 
on the solution. It has been computed for various values of TOL: 

| TOL || 10-1 | 5.10-2 10-2 | 5.10- 
Eff 0.055 | 0.051 | 0.060 0.091 
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FIGURE 12. Solution 3, p = 4, m(t) does not depend on TOL 
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Concerning computing time, we have 

Solution3 (T=4) |1 level || p=4 | p=8 [ p= 10] p-12 | p-16 | 
TOL CPU time (seconds) 190 s 105 s 88 s 87 s 88 s 91 s 
=0.01 M-L time/1-L Time 1 0.55 0.46 0.46 0.46 0.48 
TOL CPU time (seconds) | 886 s 377 s 285 s [ 274 s 271 s 270 s 

|=0.005 M-L time/1-L Time || 1 || 0.43 | 0.32 [ 0.31 | 0.31 0.30 

For this solution, the gain in computing time reaches 70%, and again increases 
as TOL decreases. Indeed, as shown on Figure 12, and as in the linear case, p being 
a constant, there exists a function mc(t), which does not depend on TOL, such that 
if M(t) > mc(t) then m(t) - mc(t)). 

Therefore, compared with the one-level algorithm, the smaller TOL is, the more 
modes are integrated with a time step pk > k, and the greater the gain is. 

This behaviour can be heuristically justified with an argument similar to the one 
given in the linear case. The details are omitted. 

APPENDIX 

A. 1. Proof of Theorem 3.1. Following the general approach developed by 
C. Johnson and his coworkers (see in particular [7, 10]), the main steps of the 
proof consist in: 

1. introducing variational formulations of the scheme (3.5) and of the linearized 
dual problem (3.6); 

2. obtaining an error representation thanks to an appropriate solution (0 of prob- 
lem (3.6); 

3. using Galerkin orthogonality to condense this representation; and 
4. combining interpolation error estimates and the strong stability constants CS 

defined in (3.8). 

We aim to derive (3.10), that is, to estimate the error e = u - U at time tN. 

Recall that the continuous solution u belongs to the space S defined by (3.4), 
while the approximate solution U lies in gh given by (2.3) supplemented with the 
divergence-free condition. 

We will need some additional notation. The scalar products in H and V are 
respectively denoted by (.,.) and ((.,.)). Also, the error e = u - U lies in the 
following space D that contains both gh and 8: 

(A.1) D = {v E Loc(0, T; V) n L2(0, T; D(A)); 

Vn E {1,. .., N}, vt E L2 (In; H) and vn - exist}, 

where we have set 

(A.2) vn[1 = lim v(tn-1 + s), vn7 = lim v(tn + s), [vn] = vn - vn. 

We now introduce variational formulations of (3.5) and (3.6). It is easy to check 
that the approximate solution U given by (3.5) satisfies 

(A.3) Ch(U, V) = F(v), Vv E ?Ch, 
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where F is given by 

N 

(A.4) F(v) = >31 (f,v)dt + (uo, v+) 
n=1 In 

and Ch is defined by 

(A.5) 
N N-1 

Ch(U,v) = f {((U, v)) + (B(Un-l),PMv)} dt+ E ([Un],vn+) + (Uj+,v+), 
n=1'In n=1 

where v E D, and we agree to set Uo = uo for all U E Sh 

Next, the dual linearized problem (3.6) runs backward in time. Introducing the 
operator 

N 

(A.6) Lh(U,V;Z,W) = > J {(-Wt, Z) + ((w, z)) + B*(u, v; z,w)} Idt 
n=1 In 

N-1 

- Z([wn],zn) + (WmZK), U,V,W,Z E i, 
n=1 

the solution (p ES of (3.6) with final condition (PT E V satisfies 

(A.7) Lh(u, U;'O,(p) = ((PTiVN), Vo CD. 

In order to obtain a representation formula of the error e at time tN, we consider 
the solution (p of (3.6) with final condition (PT = e= U(tN) - UN E V, and set 
4' = e in (A.6). Then, (A.7) reads 

(A.8) |U(tN) - UN2 = Lh(u, U; e,(p) 

We now seek to express Lh(u, U; e,(p) in terms of the operator Ch. Let us 
introduce the intermediate operator Ah defined, for v, w E D, by 

(A.9) 
N N-1 

Ah(v, w) = {(vt,W) + ((v,w)) + (B(v),w)} dt + E ([Vn],Wnt) + (V+,w+). 
n=1 In n=1 

Then, by integrating by parts both in space and time, it is easy to check the 
following identity: 

(A.10) Vu, v, w E D, Lh(u, v; u -v, w) = Ah(u, w)- Ah(v, w). 

Therefore, (A.8) can be written as 

(A.ll) |U(tN) - UN12 =Ah(u, P) - Ah(U,'P) 

Besides, if u E S is the solution of the continuous problem, the following identity 
is satisfied: 

(A.12) Ah(u,v)= F(v), Vv E C, 

so that (A.1) becomes 

(A. 13) |U(tN) - UN 2 = F(W) - Ah (U, P) 



574 J. B. BURIE AND M. MARION 

Finally, recalling the definition (A.5), we find that 

|U(tN) -UN | = F(P) - Ch (U,I ) 
N 

+ E j {(B(Un1) - B(Un)I PMnP) -(B(Un), QMn(p)} dt. 
n=1 In 

Next, let 'I E Sh. Thanks to the variational formulation (A.3) of the scheme 
(3.5), we obtain the following error representation formula: 

|U(tN) -UN12 = F((p- ) -Ch(U, 'F) 
N 

+ E j {(B(Un -) -B(Un)I PMn() -(B(Un), Q Mn (p)} dt, 
n=1 n 

which we expand by replacing F and Ch with their expressions (A.4) and (A.5), to 
conclude that 

(A. 14) 
N 

|U(tN) -UN|2 = 3 J {(f I - ) - ((U, p - IF)) - (B(Un 1), PMn (o-))} dt 
n=1 I 

N-1 

E ( [Un] I (qP )n ) 
n=O 
N 

+ E J {(B(Un-1) - B(Un), PMn(P) -(B(Un), QMn(p)} dt. 
n=1 In 

Now we take I = f in (A.14), where ; is the orthogonal projection of so ongh, 
that is, 

~7(0 IIn = PMn1rnsO(t) = 1rnPMnsO(t), with rn(P = k j s(.,t) dt. 
kn 

Due to the Galerkin orthogonality properties 

((Up- )) dt = j ((U, so- iTnso)) dt+ j((UW QMn7wn9)) dt = 0, 

(A.14) reduces to 

N N-1 

(A.15) U(tN) - UN12 = 3J (f, s-W)dt- > ([Un] (I n+) 
n= 1In n=O 

N N 

+ E (B(Un-1) - B(Un),PMn (o) dt- >3(B(Un) I QMn () dt. 
n=1 In n=1 In 

Next, we aim to majorize the right-hand side of (A.15). For that purpose, it is 
convenient to write 

((s - ()In = ((s - PMn(P) + (PMn(P - PMn1rn s), 
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so that (A. 15) becomes 

(A.16) 

IU(tN) - UNI2 
N N 

Z E J (f) PMnC - irnPMn)dt - Z([Un-1], PMn(plo -TnpMn S) 
n=1 In n=l 

N N 

+ >31 (f I (P - PMn) n-1 - nPn-1) 
n=1 In n=l 

N N 

+ 3 (B(Un1) - B(Un) I PMn(p)dt - j (B(Un) I QMn(p)dt 
n= 1 n n= 1 In 

=+ 1 + III + IV + V + VI. 

The terms in the right-hand side of (A. 16) have been denoted by I-VI, and we 
intend to bound them, thanks to the following interpolation estimates for PM and 
7rn: 

(A.17) lu- PMU < 4M-2 JAul, 

(A.18) Ilu- -7rnulIn < min (2IuIIn>j lutl dt) 

together with the stability constants Cs defined in (3.8). 
Beginning with the first term, we find that 

N 

< zj (f - rfM (PM-O-rn 7PMn p) dt 

N 

*> j: if- irnfI SOP lFnSOldt 

T-kN 

< Ilk2ft | 211(PIIN + ? otdt). 

Therefore, due to the definition (3.8a) for CS, we infer that 

(A.19) III < (2 + LN)CiS(T, U, U) Ilk2ft IIT |U(tN) - UN|- 

Similarly, it can be shown that 

(A.20) III 1 < (2 + LN)CS(T, U, U) max l[Un-]l ]U(tN) -UN I 

Here, as UlIn = Un, we have [Un-f] = Un- Unl. 
The estimate of the third term is more involved. We decompose it as follows: 

N-1 

(A.21) III = E J (QMn fl QMn (S) dt + (QMN f, QMN (S) dt = Illa + IlIb, 

The first term in (A.21) satisfies 

RtN-1 

(A.22) IlIIal < 4 ||M-2QMf IT j IASI 
dt 

< 4LNC2 (T,u,U) IIM2QMf IT |U(tN) - UN|. 



576 J. B. BURIE AND M. MARION 

Next, in order to estimate IlIb, we consider 
t 

4(= J (p(s)ds, 

and, by integrating by parts, we find that 

(A.23) IIIb = -(QMN f (tN-1), QMN @ (tN- 1)) -I (QMN ft I QMN 4)dt. 

Then, on one hand, we note that 

I|(QMN f(tN- 1) QMN 4D(tN- 1))| 4||1M-2QMf IIIN JA4D(tN-1)| 

rtN-1 
< 411M2QMfH1IN j A(p(s)ds 

which implies by (3.8c) that 

(A.24) 

I(QMNf(tN-1), QMN (tN-1))I < 4C3 (T, ,U)jjM2QMf |IN IU(tN) - UN|- 

On the other hand, we similarly write 

I (QMNft I QMN )dt < 4kN MN|2 IA4D||IN IIQMNft||IN 
IN 

(A.25) ? 
4kNMN V AjA (s)ds IIQMftll.N 

? 4C3 (T,u,U)HjkM 2QMftIIIN |U(tN) - UN| 

Next, since QMn[U1-,] = -QMnUn-1, the fourth term is such that 

N~?Z QM,Unh-1 JIV I < 1: 4 | 2 W[ kn l A(p(tn_ 1) | 

which due to (3.8d) for CS yields 

(A.26) |IV| < 4LNC4S(T,u, U) max QMn k MU1 |U(tN) - UN|- 
nE{1,..N} knMn 

Thanks to (3.8e) we obtain 

(A.27) Vj < C5(T,u,U) max }PMn(B(Un)-B(Un-1))| U(tN)-UN|. 
nC{1,..N} 

Finally, the sixth term splits analogously to (A.21) and one can check that 

N-1 

(A.28) 3E j(B(Un), QMn )dtd 

< 4LNC2 (T,u,U) max Mn 2QMnB(Un)l |U(tN) -UN|, 

(A.29) JN(B(UN) ,QMN)dt < 4CS (T, U),M VQMNB(UN)l |U(tN)-UNI. 
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Combining (A.15) with (A.19), (A.20), (A.26), (A.22), (A.24), (A.25), (A.27), 
(A.28) and (A.29) provides the bound (3.10), and concludes the proof of Theorem 
3.1. 

A.2. Proof of Theorem 3.2. The proof follows steps analogous to the ones above 
for Theorem 3.1. 

We aim to estimate the error e = u - U at time tN. Here, the approximate 
solution given by the scheme (3.12) belongs to the space YFh defined by (2.10) 
supplemented with the divergence-free condition. Since Fh C D, the error e still 
belongs to D given by (A.1). 

First, we introduce a variational formulation for the scheme (3.12). The approx- 
imate solution U satisfies 

(A.30) Dh (U, v) = F(v), Vv E Yh, 

where F is given by (A.4), and Dh by 

N N 

(A.31) Dh(U,'v) = [ ((U, v)) dt + E f (B(Un-1), PmnV)dt 

n=1 In n=1 In 

Q N-1 

+E j Uq_ 1 Pq -Pq)V) +E (1Un]vVn ) +(U0 (B(n-0 P Mvo) 
q=lJq n=1 

where we have set Uo = uo for all U E Yh- 

The second step is quite similar to the one-level case. We again consider a 
solution o of (3.6) with 'pT = eN. Then the equalities (A.8)-(A.13) still hold, and 
therefore we again have 

(A.32) U(tN) - UN12 = F((p) - Ah(U,P), 

where the operator Ah is defined by (A.9). Making use of Dh, equality (A.32) 
becomes 

N 

U(tN) -UN12 = F(P) - Dh(U, (p) + E j (B(Un-1) PmnSo)dt 
n= 1 In 

Q N 

Jj(B(Unqd) (PMq-UPmq)p) dt- E N) dt 
q=1 Z ( n=1(n 

This equality also can be rewritten as 

N 

(A.33) |U(tN) -UN 2 = F((p) - Dh(U, p) + J (B(Un-) - B(Un),Pmn(o)dt 
n=l1I 

Q N 
+ J (B(Unq-) - B (Un), (PMq - Pmq)(p)dt- - j (B (Un) QMn (p)dt. 
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Let 'I be any element of YFh. Thanks to the variational formulation (A.30) of 
the scheme (3.12), we obtain 

N 

JU(tN) - UN12 = F((p - )-Dh(U,'p- P) + E J (B(Un-) - B(Un), Pmnp)dt 
n=I In 

Q N 

+ f|(B(U nq-I) - B(U), (PMq - Pmq)P()dt - Z (B (U) QMn (p) dt. 

We expand this last equality by replacing F and Dh with their expressions. Then, 
for all I T Fh, the following error representation formula holds: 

N 

|U(tN) - UN12 = j {(f, (p - IV) - ((U, o-'J))} dt 
n=I In 

N 

-E Z (B(Un-r ) IPmnn - 4))dt 
n=I In 

Q 

- J (B(Unq-i), (PMq - Pmq) (P - IV))dt 

(A.34) N-1 N 

- Z ([Un] ((P- )n) + j (B(Un-1) -B(Un), PmnP)dt 
n=O n=I In 

Q 
+ S (B(Unq-1) - B(U), (PMq - Pmq)p)dt 

q=lI Jq 
N 

- j (B (U), QMn (p)dt. 
n=lIn 

Now we take 'I " in (A.34), where S is the orthogonal projection of fp on Fh, 
that is, 

(P(t) In - PmqFrn(P + (PMq - Pmq)7rq'P, for In C Jq, 

where 

Fn OP = kj | o(.,t)dt, lFq =k Kq | (.,t)dt. 

Using Galerkin orthogonality properties such as 

N Q 

/; (B(Un_-1), Pm (o - -p))dt / (B(Unq-i)7 (PMq- Pmq)(so O 0, 
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we see that 

(A.35) 
N N-1 

|U(tN) -UN1=ZJ (f P-)dt- ([Un] ip( P )Z) 
n= 1 In n=O 

N 

+ S j(B(Un_1) B(Un), Pmn (p)dt 
n=1 n 

Q N 

+ S f (B(Unq-) )-B(U), (PMq - Pmq) (P)dt-E 1 (B(U), QMn p)dt. 
q=1l q n= 1 

Next, writing 

(o-(p)lIn = Pmn(I -Irn)SO + (PMq - Pmq)(I- lq)(p + (I- PMq), 

and using that fact that, for all n r nq such that In C Jq, 

(PMq - Pmq)[Un-1] = (I - PMq)[Un-1] =0, 

(A.35) becomes 

(A.36) 
N N 

IU(tN) -UN2 Z j (f , Pm, (I - Irnp) p) dt ( [Un-1 ], PMn (Pn-1 - IFnPm,,, (P) 
n=lIn n=l1 
N Q 

+ Sj(f< p-PM(p)dt - L([Unq_1]v OP[qi PMq(P+q-1) 
n=l In q=1 

N N 

+ z (B(Un- 1) -B(Un), Pmn (p)dt - |(B(Un) QMn p)dt 
n=1 In n=1 In 

Q 

+ | (fPMq - Pmq) (I-q)(p)dt 
q=1 Jq 
Q 

- 5([Unq-1], (PMq - Pmq)((P -qP) ) 

q= 1 

Q 
+ SI (B(Unq-1) - B(U), (PMq - Pmq>P)dt 

q=1 q 
- +11+III+ IV + V + VI + VII + VIII + IX. 

We now use the interpolation estimates (A.17) and (A.18) and the corresponding 
ones for Pm and xq together with the stability constants Cs defined in (3.8) to 
majorize the terms I-IX in (A.36). Actually, the terms I-VI are similar to the 
previous ones in (A.16), and computations as above yield the first five lines of the 
a posteriori estimate (3.13). 
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Next, we have: 

Q 

VIII E ((I- rq) (PMq - Pmq) f, - rqop)dt 
q=1 ~J 

< IK Pm)ftllT (2 S llJQ + j 'Ptjdt). 

Therefore, recalling the definition (3.8a) of Cs, since kN < KQ, which implies 

N/1 log KQ ? < LN (assuming KQ < 1), we infer the following bound: 

IVII| < (2 + LN)C1(T, u, U) |K (PM-Pm)ftT U(tN)-UN|- 

Similarly, it can be checked that 

VIII < (2 + LN)CS(T,u, U) m axQ J(PMq -Pmq)(Unq-Unq-i) 1U(tN)-UN.I 

Finally, for the last term we have 

E f (B(Unq-i) - B(U), (PMq - Pmq)(P)dt 

< C5 (T, u, U) max Tmax (PMq-Pmq)(B(Un)-B(Unq-1)) |U(tN)UNI q ns. t. InCJq) 

Combining these estimates with (A.36) provides (3.13), and concludes the proof of 
Theorem 3.2. 
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